

THE LARGE-DISDROMETER EXPERIMENT (LDE)

&

UCLM'S X-BAND RADAR (T-REX) STATUS

Francisco J. Tapiador

+

Andrés Navarro, Raúl Moreno, Alfonso Jiménez, Cecilia Marcos

[thanks to Walt Petersen, Mathew Schwaller, David Wolff, Ziad S. Haddad, Chris Kummerow, Ali Tokay, and Ramesh Kakar]

UCLM's Disdrometers

2 Thies

16 Parsivel-1

8 Parsivel-2

Several experiments

Some experiments:

- Comparing 100m-5m measurements for the raining events
- Just a few episodes
- Database still to be exploited

2009 PMM Science Team Meeting, Salt Lake City, UT

The UCLM D-Array

Made of 9 times this dual setup (18 Parsivels)

First setup, 2009

spatial variability of rain sixteen laser disdrometers. 2010. F. J. Tapiador; R. Checa; M. de Castro. m TTERS. the using An experiment to measure RESEARCH distribution **GEOPHYSICAL** size drop

TAPIADOR ET AL.: SPATIAL VARIABILITY OF THE RAIN DSD

spatial variability of rain sixteen laser disdrometers. F. J. Tapiador; R. Checa; M. de Castro. 2010. 37 RESEARCH LETTERS. An experiment to measure the drop size distribution using **GEOPHYSICAL**

Reflectivity (Z)

Parsivel¹ + Parsivel²

2015

Parsivel² improves over Parsivel¹ [more sensitive to small drops]

The 'Large Disdrometer Experiment'

How important is the small catching area of disdrometers? Large biases?

How large should it be?

LDE 2011

Experimental layout

The catching area is larger: increased probability of having rare events (large drops)

Assumption: Estimates are going to be closer to the truth than those from just one disdrometer

The synthetic LD acts here as a reference: our "true" estimate of the DSD

One disdrometer

Large-Disdrometer (LD) equivalent area

What if we have one?

That would give us a different answer from the LD

What if we have another one?

That would also give us a different answer

Different from the first, and also from the LD estimate

What if we have another one?

That would also give us a different answer

Different from the first, and from the LD estimate

For r=1, we have 16 arrangements

Cause we have $\binom{n}{r}$ ("n choose r")

arrangements of r disdrometers taken from a set of n disdrometers

(also noted as C_rⁿ)

What if we have two?

That would give us a different answer

Different from just one, and different from the LD-reference

What if we have two?

Same thing for other arrangements

What if we have two?

That would give us a different answer

We have $16!/(14!\cdot 2!) = 120$ combinations

What if we have six?

That would indeed give us a different answer

We have now 8008 combinations

But this answer is likely to be closest to the 'truth' than having just two

In total, we calculated 16k different estimates

We **didn't** randomly selected a setup, we calculated all the possible combinations.

Of course we did not just aggregate the results from individual disdrometers

We didn't do this:

Of course we did not just aggregate the results from individual disdrometers

We rather input the processing software (Tokay's) with the data of the **union** of data from several disdrometers then calculate the mean values over the combinations, over time

Catching area

A single disdrometer almost certainly:

- Underestimates Z
- Overestimates R
- Overestimates D_{mass}
- Underestimates D_{max}

This is something we should be aware of when considering the values given by a single instrument

The combined area of 7 disdrometers seems enough for this case

There is of course other sources of error/uncertainty

Thus for instance in calculating radiometric quantities

[spherical drops; drop size is exaggerated in these plots]

T-matrix multiple scattering calculations for a variety of arrangements, frequencies and temperatures

- Complex refractive index depends on temperature, (salinity) and frequency
- Length scale factor depends on frequency

X-band; 5 °C

X-band; 5 °C

UCLM's T-Rex

A dual polarization X-band radar

Transmitter (Magnetron type)

featuring:

- Frequency range: 9.375 GHz (X-Band)

Nominal RF Peak Power > 55 kW

- Pulse modes: 3

- Pulse Width: 0.33 μs - 3.3 μs

SELEX METEOR 60DX TYPE

RF Receiver Unit

featuring:

- Frequency range 9.3 9.5 GHz (X-Band)
- Noise figure < 2.5 dB
- RX total dynamic range > 90 dB
- Dual polarization, H + V simultaneous

[Blame Walt]

T-Rex at Wallops

New (received December 2015)

Now at Wallops

We hope we can start measuring by next week

ICE-POP 2018 [slide from G. Lee]

Thanks